Algebra 1

Problem Set #2

1 Order on \mathbb{Z}

Exercise 1 :

Prove that in any unitary commutative ordered ring R, for any $x, y \in R$:

- 1. $x > y \Rightarrow x + c > y + c$, for all $c \in R$.
- 2. $x \neq 0 \Rightarrow x^2 > 0$.
- 3. If a > 0 and b > 0 then $a > b \Leftrightarrow a^2 > b^2$. (Hint : $(b^2 a^2) = (b a)(b + a)$. Use Rule of Sings).

Solution :

1. $x > y \Rightarrow x - y > 0$. But

$$\begin{array}{rcl} x-y &=& x+(-y)=x+0+(-y)\\ &=& x+[c+(-c)]+(-y)\\ &=& (x+c)+[(-y)+(-c)])=x+c+(-(y+c))\\ &=& (x+c)-(y+c) \end{array}$$

so $x > y \Leftrightarrow (x + c) - (y + c) > 0 \Leftrightarrow x + c > y + c$.

- 2. x is either > 0 or < 0. If x > 0, then we also have $x^2 > 0$. If x < 0, then $-x = (-1) \cdot x$ is > 0 and $(-x)^2 > 0$. But $(-x)^2 = (-1)^2 x^2 = x^2$, so $x^2 > 0$ in this case too.
- 3. $a^2 b^2 = (a + b)(a b)$ by distributive laws. Since a, b > 0 are automatically have a + b > 0 and by the rules of signs, $(a + b)(a b) > 0 \Leftrightarrow (a b) > 0$. Thus $a^2 > b^2 \Leftrightarrow a^2 b^2 > 0 \Leftrightarrow (a + b)(a b) > 0 \Leftrightarrow a b > 0 \Leftrightarrow a > b$, if a and b are > 0.

2 Equivalence relation on sets

Exercise 2 :

For n > 1 define $a \equiv b \pmod{n}$ to mean

b-a is an integer multiple of n

Verify that this is an RST relation on $X = \mathbb{Z}$. Solution :

1. <u>Reflexive</u> : $a \sim_R a$. Proof : $(a - a) = 0 \cdot 5$ is a multiple of 5;

- 2. Symmetric : $a \sim_R b \Rightarrow b \sim_R a$. Proof : If b a = 5k for some $k \in \mathbb{Z}$ then $a b = \overline{(-1) \cdot k} = 5 \cdot (-k)$ is also an integer multiple of 5.
- 3. <u>Transitive</u> : $(a \sim_R b)$ and $(b \sim_R c) \Rightarrow (a \sim_R c)$. Proof : By hypotheses, $\exists k, l \in \mathbb{Z}_+$ such that b = a+5k, c = b+5l. Then $c = b+5l = (a+5k)+5l = a+5(k+l) \Rightarrow c-a =$ multiple of $5 \Rightarrow c \sim_R a$.

3 Induction

Exercise 3:

Prove $n^2 = (\text{sum of first } n \text{ odd integers}) = \sum_{k=1}^{n} (2k-1) = 1 + 3 + \dots + (2n-1)$. **Solution :** By induction : certainly true if n = 1. If true at level n, then at level n + 1 we have

$$(sum) = (1+3+\dots+2n-1) + (2(n+1)-1) = n^2 + 2n + 2 - 1 = n^2 + 2n + 1 = (n+1)^2$$

So $(P(n) \text{ true }) \Rightarrow (P(n+1) \text{ true})$. $P(n)$ is true for all $n \in \mathbb{N}$.

4 Integers

4.1 Absolute value

Exercise 4 : Prove

$$|x+y| \le |x| + |y|$$

in any commutative ordered ring R.

Solution :

Since $x^2 \ge 0$ for every $x \in R$, $|x^2| = x^2 = |x|^2$. Thus

$$0 \le |x \pm y|^2 = (x \pm y)^2 = x^2 \pm 2xy + y^2$$
, for all $x, y \in R$

Now, $\pm 2xy \leq 2|xy| = 2|x| \cdot |y|$, because $u \leq |u|$ for every $u \in R$. Hence,

$$|x \pm y|^{2} = x^{2} \pm 2xy + y^{2} \leq x^{2} + 2|x| \cdot |y| + y^{2} = |x|^{2} + 2|x| \cdot |y| + |y|^{2} = (|x| + |y|)^{2}$$

Since $|x \pm y| \ge 0$, removing the exponent imply $|x \pm y| \le |x| + |y|$.

4.2 Divisibility in the system of integers

4.2.1 GCD

Exercise 5 :

- 1. Prove gcd(a, b) = gcd(b, a) for $a, b \neq 0$.
- 2. If $k \in \mathbb{Z}$ is fixed and $a, b \neq 0$ prove that gcd(a, b) = gcd(a + kb, b).

3. If a, b > 0 and a divides b, show that gcd(a, b) = a.

Solution :

- 1. Obviously, $\mathbb{Z}a + \mathbb{Z}b = \{ra + sb : r, s \in \mathbb{Z}\} = \mathbb{Z}b + \mathbb{Z}a$. The smallest positive element in this set is equal to gcd(a, b) and gcd(b, a).
- 2. gcd(a + kb, b) is the smallest positive element in

$$\Gamma = \mathbb{Z}(a+kb) + \mathbb{Z}b = \{(ra+rkb) + sb : r, s \in \mathbb{Z}\} = \{ra + (rk+s)b : r, s \in B\}$$

But as *s* runs though \mathbb{Z} , s' = rk + s runs through all of \mathbb{Z} . Thus

$$\Gamma = \{ra + s'b : r, s' \in \mathbb{Z}\} = \mathbb{Z}a + \mathbb{Z}b$$

We see that gcd(a + kb, b) = smallest positive element in $\Gamma = gcd(a, b)$. Note : k is fixed. If $r, s' \in \mathbb{Z}$, we can get ra + (rk + s)b to equal ra + s'b simply by taking s = s' - kr.

3. All means $\exists m \in \mathbb{Z}$ such that b = ma. Then $\Gamma = \mathbb{Z}a + \mathbb{Z}b$ is $= \{ra + sb = ra + msa : r, s \in \mathbb{Z}\}$. This is just the set $\mathbb{Z}a$ of all multiples of a: obviously $ra + msa = (r + ms)a \in \mathbb{Z}a$, and if $n \in \mathbb{Z}$, we can make r + ms = n in many ways, e.g. s = 0, r = n. Since $\Gamma = \mathbb{Z}a$, its smallest positive element is $1 \cdot a = a$ (every $n \in \mathbb{N} = \{x \in \mathbb{Z} : x > 0\}$ is ≥ 1). Thus gcd(a, b) = a if a|b.

Exercise 6:

Taking a = 955, b = 11422, use the extended GCD extended to find first gcd(955, 11422) and find $r, s \in \mathbb{Z}$ such that ra + sb = gcd(955, 11422). Solution :

$$\begin{array}{rcl} 11422 &=& 11(955)+917\\ 955 &=& 1(917)+38\\ 917 &=& 24(38)+5\\ 38 &=& 7(5)+3\\ 5 &=& 1(3)+2\\ 3 &=& 1(2)+1\\ \end{array}$$

$$gcd(11422,955) &=& gcd(917,955)=gcd(917,38)=gcd(5,38)=gcd(5,3)\\ &=& gcd(2,3)=gcd(1,2)=1\\ \end{array}$$

To find r,s such that r(955) + s(11422) = gcd(955, 11422) = 1 work the calculation displayed above backwards.

$$\begin{array}{rcl} 1 &=& 3-2=3-(5-3)\\ 1 &=& -5+2\times 3=-5+2\times (38-7(5))\\ 1 &=& -15(5)+2(38)=-15(917-24(38))+2(38)\\ &=& -15(917)+362(38)=-15(917)+362(955-917)\\ &=& -377(917)+362(955)=-377(1142-11(955))+362(955)\\ &=& 377(1142)-4509(955) \end{array}$$

Take r = 4509, s = -377.

Exercise 7 :

Generalize the definition of gcd to define $gcd(a_1, \ldots, a_r)$, where a_i are nonzero. Make the obvious changes in the definition of gcd(a, b) and

1. Prove $c = gcd(a_1, \ldots, a_r)$ exits by considering the set of integer linear combinations

$$\Gamma = \mathbb{Z}a_1 + \cdots + \mathbb{Z}a_r = \{\sum_{i=1}^r k_i a_i : k_i \in \mathbb{Z}\}$$

Show that $\Gamma \cap \mathbb{N} \neq \emptyset$ and verify that the smallest element $c \in \Gamma \cap \mathbb{N}$ (which exists by the Minimum principle) has a properties required of $gcd(a_1, \ldots, a_r)$.

2. Show that $\Gamma = \mathbb{Z}c$ all integer multiples of $gcd(a_1, \ldots, a_r)$.

Solution :

- 1. Given $a_1, \ldots, a_n \neq 0$ define $\Gamma = \mathbb{Z}a_1 + \cdots + \mathbb{Z}a_n$ (set of integer linear combinations). Obviously $\Gamma \neq \emptyset$ and contains element > 0 (take $\sum_i m_i a_i$ with $m_i = 1$, if $a_i > 0$, $m_i = -1$ if $a_i < 0$); by the minimum property, there is a (unique) smallest element c > 0 in $\Gamma \cap \{x \in \mathbb{Z} : x > 0\} = \Gamma \cap \mathbb{N}$. We claim that c is a $gcd(a_1, \ldots, a_n)$:
 - (a) c > 0 by definition;
 - (b) $c|a_i$, all i.
 - (c) If c' divides a_1, \ldots, a_n (say $a_i = r_i c'$) then c' divides c.

There is $m_i \in \mathbb{Z}$ such that $c = \sum_i m_i a_i$ because $c \in \Gamma$. Then $c = \sum_i (m_i r_i)c'$ so c'|c. As in the case n = 2 (Notes) we show that c divides any element in Γ (obviously each $a_i \in \Gamma$). By Euclidean division algorithm, we may write any $c' \in \Gamma$ as $c' = s \cdot c + r$ with $0 \leq r < c$ and $s \in \mathbb{Z}$. Then $0 \leq r = c' - sc < c$ and $c' - sc \in \Gamma$. Since c is the smallest element in $\Gamma \cap \mathbb{N}$, the only possibility is that r = 0, and then c' = sc, c|c' as required.

2. In the part (b) of (ii), we showed that c|c' for all $c' \in \Gamma$. since $c \in \Gamma$ too (by definition), and $k \cdot (\sum_i m_i a_i) = \sum_i (km_i)a_i \in \Gamma$, for any $k \in \mathbb{Z}$, $c' = \sum_i m_i a_i \in \Gamma$, we see that $\Gamma = \mathbb{Z} \cdot c$.

Exercise 8 :

If $a, b \neq 0$ and u_1, u_2 are units in \mathbb{Z} , prove that c = gcd(a, b) is equal to $c' = gcd(u_1a_1, u_2b)$.

Solution :

Write $\Gamma = \mathbb{Z}a + \mathbb{Z}b$, $\Gamma' = \mathbb{Z}(u_1a) + \mathbb{Z}(u_2b)$. We know $\Gamma = \mathbb{Z} \cdot c$ and $\Gamma' = \mathbb{Z} \cdot c'$. Write $c = gcd(a,b) = r_0a + s_0b$, $c' = gcd(u_1a, u_2b) = r_1(u_1a) + s_1(u_2b)$ $(r_0, s_0, r_1, s_1 \in \mathbb{Z})$ Then $c' = (r_1u_1)a + (s_1u_2)b \in \Gamma$ so $\Gamma' = \mathbb{Z}c' \subseteq \Gamma$. Conversely, $\Gamma = \mathbb{Z} \cdot c$ and $c = r_0a + s_0b$ can be rewritten as $c = r_0u_1^{-1}(u_1a) + s_0u_2^{-1}(u_2b) \in \Gamma'$. Hence $\Gamma = \mathbb{Z} \cdot c \subseteq \Gamma'$. Therefore the sets are equal and c' = c.

4.2.2 Prime factorization

Exercise 9:

Prove that $p|a \Leftrightarrow p^2|a^2$ for any prime p > 1.

Solution :

 \Rightarrow is trivial. $p|a \Rightarrow \exists m \in \mathbb{Z}$ such that $a = mp \Rightarrow a^2 = m^2 p^2 \Rightarrow p^2 |a^2$.

 \Leftarrow The case a = 1 is excluded because we assume p > 1, which implies $p^2 > 1$, and a number > 1 cannot divide a = 1. In the remaining cases we use unique prime factorization of a. So, assume p > 1 and a > 1, suppose $p^2|a^2$. Write $a = \prod_{j=1}^r p_i^{m_i}$ with $p_i > 1$ distinct prime divisors of a and multiplicities $m_i \ge 1$. Then the unique prime factorization of a^2 must be $\prod_{j=1}^r p_i^{2m_i}$ (all multiplicities doubled). Now $p^2|a^2 \Rightarrow p|a^2$ so \exists index i such that $p = p_i$. But then p|a desired to prove (\Leftarrow). The last part follow from the definition : n even $\Leftrightarrow 2|n$.

Exercise 10:

If $n = \prod_{i=1}^{r} q_i$ with each $q_i > 1$ prime (repeats allowed), and with $r \ge 2$, so n is not already a prime. Show \exists index i such that $q_i \le \sqrt{n}$.

Solution : Otherwise, $q_i > \sqrt{n}$ for all *i*. Since $r \ge 2$, we get $n \ge q_1q_2 > \sqrt{n}\sqrt{n} = n$.

Exercise 11:

If p > 1 a prime and $n \neq 0$ prove that $gcd(p, n) > 1 \Leftrightarrow p$ divides n.

Solution :

 (\Rightarrow) If c = gcd(p, n) > 1, we have c|p so p = cm for some m > 0 in \mathbb{Z} . The units ± 1 in \mathbb{Z} have absolute value 1 so c cannot be a unit. By definition of "prime", the other factor must be a unit $(m = \pm 1$, hence m = 1), otherwise p would have a nontrivial factorization. Then c must $= pm^{-1} = p \cdot 1 = p$ and p = c. It follows that p = c also divides n.

(\Leftarrow) If p divides n, p divides gcd(p,n) = c (since $\exists r, s \in \mathbb{Z}$ such that c = pr + ns). Thus $c = mp \ge 1 \cdot p = p > 1$.