
Dr. Marques Sophie Algebra 1 Spring Semester 2017
Office 519 marques@cims.nyu.edu

Problem Set #2

1 Order on Z

Exercise 1 :
Prove that in any unitary commutative ordered ring R, for any x, y P R :

1. x ą y ñ x` c ą y` c, for all c P R.

2. x ‰ 0 ñ x2 ą 0.

3. If a ą 0 and b ą 0 then a ą b ô a2 ą b2. (Hint : pb2 ´ a2q “ pb ´ aqpb ` aq. Use
Rule of Sings).

Solution :

1. x ą y ñ x´ y ą 0. But

x´ y “ x` p´yq “ x` 0` p´yq
“ x` rc` p´cqs ` p´yq
“ px` cq ` rp´yq ` p´cqsq “ x` c` p´py` cqq
“ px` cq ´ py` cq

so x ą y ô px` cq ´ py` cq ą 0 ô x` c ą y` c.

2. x is either ą 0 or ă 0. If x ą 0, then we also have x2 ą 0. If x ă 0, then ´x “ p´1q¨x
is ą 0 and p´xq2 ą 0. But p´xq2 “ p´1q2x2 “ x2, so x2 ą 0 in this case too.

3. a2 ´ b2 “ pa ` bqpa ´ bq by distributive laws. Since a, b ą 0 are automatically have
a ` b ą 0 and by the rules of signs, pa ` bqpa ´ bq ą 0 ô pa ´ bq ą 0. Thus
a2 ą b2 ô a2 ´ b2 ą 0 ô pa ` bqpa ´ bq ą 0 ô a ´ b ą 0 ô a ą b, if a and b are
ą 0.

2 Equivalence relation on sets

Exercise 2 :
For n ą 1 define a ” bpmod nq to mean

b´ a is an integer multiple of n

Verify that this is an RST relation on X “ Z.
Solution :

1. Reflexive : a „R a. Proof : pa´ aq “ 0 ¨ 5 is a multiple of 5 ;
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2. Symmetric : a „R b ñ b „R a. Proof : If b ´ a “ 5k for some k P Z then a ´ b “
p´1q ¨ k “ 5 ¨ p´kq is also an integer multiple of 5.

3. Transitive : pa „R bq and pb „R cq ñ pa „R cq. Proof : By hypotheses, Dk, l P Z`
such that b “ a`5k, c “ b`5l. Then c “ b`5l “ pa`5kq`5l “ a`5pk`lq ñ c´a “
multiple of 5 ñ c „R a.

3 Induction

Exercise 3 :
Prove n2 “ (sum of first n odd integers) =

řn
k“1p2k´ 1q “ 1` 3` ¨ ¨ ¨ ` p2n´ 1q.

Solution : By induction : certainly true if n “ 1. If true at level n, then at level n ` 1 we
have

psumq “ p1`3`¨ ¨ ¨`2n´1q`p2pn`1q´1q “ n2
`2n`2´1 “ n2

`2n`1 “ pn`1q2

So (Ppnq true ) ñ (Ppn` 1q true). Ppnq is true for all n PN.

4 Integers

4.1 Absolute value

Exercise 4 :
Prove

|x` y| ď |x| ` |y|

in any commutative ordered ring R.
Solution :
Since x2 ě 0 for every x P R, |x2| “ x2 “ |x|2. Thus

0 ď |x˘ y|2 “ px˘ yq2 “ x2
˘ 2xy` y2, f or all x, y P R

Now, ˘2xy ď 2|xy| “ 2|x| ¨ |y|, because u ď |u| for every u P R. Hence,

|x˘ y|2 “ x2
˘ 2xy` y2

ď x2
` 2|x| ¨ |y| ` y2

“ |x|2 ` 2|x| ¨ |y| ` |y|2 “ p|x| ` |y|q2

Since |x˘ y| ě 0, removing the exponent imply |x˘ y| ď |x| ` |y|.

4.2 Divisibility in the system of integers

4.2.1 GCD

Exercise 5 :

1. Prove gcdpa, bq “ gcdpb, aq for a, b ‰ 0.

2. If k P Z is fixed and a, b ‰ 0 prove that gcdpa, bq “ gcdpa` kb, bq.

2



3. If a, b ą 0 and a divides b, show that gcdpa, bq “ a.

Solution :

1. Obviously, Za`Zb “ tra` sb : r, s P Zu “ Zb`Za. The smallest positive element
in this set is equal to gcdpa, bq and gcdpb, aq.

2. gcdpa` kb, bq is the smallest positive element in

Γ “ Zpa` kbq `Zb “ tpra` rkbq ` sb : r, s P Zu “ tra` prk` sqb : r, s P Bu

But as s runs though Z, s1 “ rk` s runs through all of Z. Thus

Γ “ tra` s1b : r, s1 P Zu “ Za`Zb

We see that gcdpa` kb, bq “ smallest positive element in Γ “ gcdpa, bq.
Note : k is fixed. If r, s1 P Z, we can get ra ` prk ` sqb to equal ra ` s1b simply by
taking s “ s1 ´ kr.

3. All means Dm P Z such that b “ ma. Then Γ “ Za`Zb is “ tra` sb “ ra`msa :
r, s P Zu. This is just the set Za of all multiples of a : obviously ra`msa “ pr`msqa P
Za, and if n P Z, we can make r ` ms “ n in many ways, e.g. s “ 0, r “ n. Since
Γ “ Za, its smallest positive element is 1 ¨ a “ a (every n P N “ tx P Z : x ą 0u is
ě 1). Thus gcdpa, bq “ a if a|b.

Exercise 6 :
Taking a “ 955, b “ 11422, use the extended GCD extended to find first gcdp955, 11422q
and find r, s P Z such that ra` sb “ gcdp955, 11422q.
Solution :

11422 “ 11p955q ` 917
955 “ 1p917q ` 38
917 “ 24p38q ` 5
38 “ 7p5q ` 3
5 “ 1p3q ` 2
3 “ 1p2q ` 1

gcdp11422, 955q “ gcdp917, 955q “ gcdp917, 38q “ gcdp5, 38q “ gcdp5, 3q
“ gcdp2, 3q “ gcdp1, 2q “ 1

To find r, s such that rp955q ` sp11422q “ gcdp955, 11422q “ 1 work the calculation
displayed above backwards.

1 “ 3´ 2 “ 3´ p5´ 3q
1 “ ´5` 2ˆ 3 “ ´5` 2ˆ p38´ 7p5qq
1 “ ´15p5q ` 2p38q “ ´15p917´ 24p38qq ` 2p38q
“ ´15p917q ` 362p38q “ ´15p917q ` 362p955´ 917q
“ ´377p917q ` 362p955q “ ´377p1142´ 11p955qq ` 362p955q
“ 377p1142q ´ 4509p955q

Take r “ 4509, s “ ´377.
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Exercise 7 :
Generalize the definition of gcd to define gcdpa1, . . . , arq , where ai are nonzero. Make
the obvious changes in the definition of gcdpa, bq and

1. Prove c “ gcdpa1, . . . , arq exits by considering the set of integer linear combinations

Γ “ Za1 ` ¨ ¨ ¨ `Zar “ t

r
ÿ

i“1

kiai : ki P Zu

Show that Γ XN ‰ H and verify that the smallest element c P Γ XN (which
exists by the Minimum principle) has a properties required of gcdpa1, . . . , arq.

2. Show that Γ “ Zc all integer multiples of gcdpa1, . . . , arq.

Solution :

1. Given a1, . . . , an ‰ 0 define Γ “ Za1` ¨ ¨ ¨ `Zan (set of integer linear combinations).
Obviously Γ ‰ H and contains element ą 0 (take

ř

i miai with mi “ 1, if ai ą 0,
mi “ ´1 if ai ă 0) ; by the minimum property , there is a (unique ) smallest element
c ą 0 in ΓX tx P Z : x ą 0u “ ΓXN. We claim that c is a gcdpa1, . . . , anq :

(a) c ą 0 by definition ;

(b) c|ai, all i.
(c) If c1 divides a1, . . . , an (say ai “ ric1) then c1 divides c.

There is mi P Z such that c “
ř

i miai because c P Γ. Then c “
ř

ipmiriqc1 so c1|c.
As in the case n “ 2 (Notes) we show that c divides any element in Γ (obviously each
ai P Γ). By Euclidean division algorithm, we may write any c1 P Γ as c1 “ s ¨ c ` r
with 0 ď r ă c and s P Z. Then 0 ď r “ c1 ´ sc ă c and c1 ´ sc P Γ. Since c is the
smallest element in ΓXN, the only possibility is that r “ 0, and then c1 “ sc, c|c1 as
required.

2. In the part pbq of piiq, we showed that c|c1 for all c1 P Γ. since c P Γ too (by definition),
and k ¨ p

ř

i miaiq “
ř

ipkmiqai P Γ, for any k P Z, c1 “
ř

i miai P Γ, we see that
Γ “ Z ¨ c.

Exercise 8 :
If a, b ‰ 0 and u1, u2 are units in Z, prove that c “ gcdpa, bq is equal to c1 “
gcdpu1a1,u2bq.
Solution :
Write Γ “ Za ` Zb, Γ1 “ Zpu1aq ` Zpu2bq. We know Γ “ Z ¨ c and Γ1 “ Z ¨ c1. Write
c “ gcdpa, bq “ r0a ` s0b, c1 “ gcdpu1a,u2bq “ r1pu1aq ` s1pu2bq (r0, s0, r1, s1 P Z) Then
c1 “ pr1u1qa` ps1u2qb P Γ so Γ1 “ Zc1 Ď Γ. Conversely, Γ “ Z ¨ c and c “ r0a` s0b can be
rewritten as c “ r0u´1

1 pu1aq ` s0u´1
2 pu2bq P Γ1. Hence Γ “ Z ¨ c Ď Γ1. Therefore the sets

are equal and c1 “ c.
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4.2.2 Prime factorization

Exercise 9 :
Prove that p|a ô p2|a2 for any prime p ą 1.

Solution :
ñ is trivial. p|a ñ Dm P Z such that a “ mp ñ a2 “ m2p2 ñ p2|a2.
ð The case a “ 1 is excluded because we assume p ą 1, which implies p2 ą 1, and a
number ą 1 cannot divide a “ 1. In the remaining cases we use unique prime factorization
of a. So, assume p ą 1 and a ą 1, suppose p2|a2. Write a “

śr
j“1 pmi

i with pi ą 1 distinct

prime divisors of a and multiplicities mi ě 1. Then the unique prime factorization of a2 must
be

śr
j“1 p2mi

i (all multiplicities doubled). Now p2|a2 ñ p|a2 so D index i such that p “ pi.

But then p|a desired to prove pðq. The last part follow from the definition : n even ô 2|n.

Exercise 10 :
If n “

śr
i“1 qi with each qi ą 1 prime (repeats allowed), and with r ě 2, so n is not

already a prime. Show D index i such that qi ď
?

n.
Solution : Otherwise, qi ą

?
n for all i. Since r ě 2, we get n ě q1q2 ą

?
n
?

n “ n.

Exercise 11 :
If p ą 1 a prime and n ‰ 0 prove that gcdpp,nq ą 1 ô p divides n.

Solution :
pñq If c “ gcdpp,nq ą 1, we have c|p so p “ cm for some m ą 0 in Z. The units ˘1 in Z
have absolute value 1 so c cannot be a unit. By definition of ”prime”, the other factor must
be a unit (m “ ˘1, hence m “ 1), otherwise p would have a nontrivial factorization. Then
c must “ pm´1 “ p ¨ 1 “ p and p “ c. It follows that p “ c also divides n.
pðq If p divides n, p divides gcdpp,nq “ c (since Dr, s P Z such that c “ pr ` ns). Thus
c “ mp ě 1 ¨ p “ p ą 1.
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